Kinematics in One Dimension

Kinematics

• Description of motion without the agents causing or modifying the motion

Motion

• Change of object *position* with *time*, respect to a reference point

Position

• Location of an object with respect to a reference point. Scalar

 $\circ x(t)$

Velocity

• Rate of change of position

 $\circ v(t)$

Acceleration

- Rate of change of velocity
- $\circ a(t)$

Motion in 1D can be described as a **function** of time.

Displacement

• Change in position, through a time interval

$$\circ ~~\Delta x = x_f - x_i$$

- Normally a vector, a scalar in 1-D motion
- Positive or negative, depending on what point of reference is used
- Equal to the area **under** the velocity v. time graph

•
$$\Delta x(t) = \lim_{\Delta t o 0} \Sigma v(t_i) \Delta t = \int_{t_i}^{t_f} v(t) dt$$

Average Velocity

• Defined as Δx per Δt

$$\circ~~ec{v}\equivrac{\Delta x}{\Delta t}$$

• Or, the slope of the line connecting two points on the position-time graph

Instantaneous Velocity

- The slope of a tangent of a point on the position-time graph
- Really just average velocity with two infinitesimally close points

•
$$t_2
ightarrow t_1, \Delta t
ightarrow 0 ext{ and } rac{\Delta x}{\Delta t}
ightarrow rac{dx}{dt} \equiv v$$

- $\circ ~~ v_{ins} = v_x = \lim_{\Delta t
 ightarrow 0} rac{\Delta x}{\Delta t} = rac{dx}{dt}$
- \circ Represented by v_{ins}

Acceleration

• Acceleration involves the change in velocity, which includes speeding up and slowing down.

$$\circ ~~ a_{x,avg} \equiv rac{\Delta v_x}{\Delta t} = rac{v_{x,f} - v_{x,i}}{t_f - t_i}$$

- How does acceleration change?
 - Change the magnitude of velocity (increase) otherwise known as "speeding up"
 - Change the magnitude of velocity (decrease) otherwise known as "slowing down"
 - Change the direction of velocity (does not happen in 1-D motion)

Average Acceleration

- The slope of the tangent of the velocity-time graph
- Defined as change of velocity per time interval

$$\circ$$
 $ec{a}\equivrac{\Delta v}{\Delta t}$

• Or, the slope of the line connecting two points on the velocity-time graph

Instantaneous Acceleration

- The slope of a tangent of a point on the velocity-time graph
- Really just average acceleration with two infinitesimally close points

•
$$t_2 o t_1, \Delta t o 0 ext{ and } rac{\Delta v}{\Delta t} o rac{dv}{dt} \equiv a$$

$$\circ ~~ a_{ins} = a_x = \lim_{\Delta t
ightarrow 0} rac{\Delta v}{\Delta t} = rac{dv}{dt}$$

- Inverted: $v_{ins}(t) = \int_{t_1}^{t_2} a_x(t) dt$
- Represented by a_{ins}

Kinematic Equations for CONSTANT ACCELERATION

$$egin{aligned} &v_f=v_i+at\ &x_f=x_i+v_it+rac{1}{2}at^2\ &v_f^2-v_i^2=2a(x_f-x_i) ext{:} ext{ found through rearrangement of 1 and 2}\ &v=v_0+at \end{aligned}$$

$$egin{aligned} &x = x_0 + v_0 t + rac{1}{2} a t^2 \ &v^2 - v_0^2 = 2 a (x - x_0) \ &x_f = x_i + v t \ &x = x_0 + v t \ &\Delta x = rac{1}{2} a t^2 \end{aligned}$$

NOTE: VELOCITY AND ACCELERATION CAN BE IN OPPOSITE DIRECTIONS

• All "slowing down" means is that velocity and acceleration have opposing signs

Free Fall

• Objects moving freely under only the influence of gravity

 $gpprox 9.81 m/s^2 ~~ [
m down]$

Conventionally, when working with kinematics equations, replace a with g.

- Free fall is the same for all objects (barring air resistance, eg. feather vs. bowling ball).
- *g* varies with location and height.
- If air resistance is significant, it is not free fall.

Acceleration on an inclined plane

- 1. Draw coordinate system on the object, x parallel and y perpendicular to the inclined surface.
- 2. Draw g downwards from the origin of the coordinate system.
- 3. Draw the y-component and x-component of the acceleration.

1. $g_y = gcos(\theta)$ and $g_x = gsin(\theta)$

Kinematics in Two Dimensions

Vectors

Scalar

- A real number with units
- Ordinary or italic font
 Vector
- Described by a scalar (magnitude) and a direction.
- Boldface font or arrow notation

Vector Addition

- \circ eg. $\vec{A} + \vec{B}$
- Triangle Method
 - Connect the start of \vec{A} and \vec{B}
- Parallelogram
 - If \vec{B} starts at the same point of \vec{A} , forming a paralellogram makes the line connecting the diagonals \vec{C} .

Coordinate Systems

- To break down a vector into components:
 - Define axes.
 - Axes don't have to be horizontal and vertical.
 - Draw components of vector.
 - Vector components (eg. v_x, v_y, v_z , are scalars.)

3D Coordinates

- Use a right-handed coordinate system.
- Meaning, the axes go |_ rather than _|.
 - Or use the hand rule.

Unit Vectors

- Vector of magnitude 1, no units, direction of the original vector. Simply a way to signify which axis a vector is on.
- $\circ~$ Denoted as $\hat{a}.$ Coordinate vectors for x,y,z dimensions are \hat{i},\hat{j},\hat{k}

• eg.
$$\vec{A} + \vec{B} = \vec{C}$$

• $(A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) + (B_x \hat{i} + B_y \hat{j} + B_z \hat{k}) = (C_x \hat{i} + C_y \hat{j} + C_z \hat{k})$
• So, $A_x \hat{i} + B_x \hat{i} = C_x \hat{i}$

• Or:

•
$$(A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} = (C_x + C_y)$$

• To subtract vectors, flip the direction of the negative vector.

Position

- The trajectory is the path of the particle.
- The position vector (\vec{r}) points from the origin to the particle's location at that time.
 - The coordinates of the plane (x, y) are the components of the position vector.

- Position and velocity can be broken into unit vector components
- $\circ ~~ec{v}=v_x\hat{i}+v_y\hat{j}+v_z\hat{k}$
- Notational:
 - $ec{v}=\dot{ec{r}}$
 - $\vec{v} = \dot{\vec{r}}$

• All constant acceleration equations need to split into x and y components

Projectile Motion

- Assumes:
 - The free-fall acceleration is constant
 - It is downwards
 - (As long as the distance is relatively small to where the Earth's curvature is negligible)
 - Air resistance is negligible
- A straight line vertical velocity would be $\vec{v}t$, so $\frac{1}{2}\vec{g}t$ is the amount the projectile falls from that straight line velocity as a function of t.

Uniform Circular Motion

- Object moving in a circle with constant speed but not constant velocity
 - \vec{v} is always tangential to the path
- $\circ~~\Delta \vec{v}$ is perpendicular to $\Delta \vec{r}$
- $\circ a_c = rac{v^2}{r}$ with a_c in the direction of the center of the circle
 - The tangential (causes change in magnitude of speed) component of acceleration is $a_t = \frac{d|\vec{v}|}{dt}$. Direction is same as \vec{v} if the speed is increasing, opposite if speed is decreasing
 - The radial (centripetal) component arises from change in direction, the perpendicular one, $a_r = -a_c$
- For non-uniform circular motion:
 - $\Delta ec{v}$ has parallel and perpendicular components to $\Delta ec{r}$
- \circ Period, T, is time for one revolution
 - Speed = $\frac{2\pi r}{T}$ so $T = \frac{2\pi r}{v}$
 - Also $T = \frac{2\pi}{\omega}$ where ω is angular velocity

Relative Motion

• Two axes with separate axes A, B.

$$\circ ~~ec{v_{PA}} = ec{v_{PB}} + ec{v_{BA}}$$

- v_{PA}^{2} is the velocity of an object at P from the perspective of A
- $\vec{v_{PB}}$ is the velocity of an object at *P* from the perspective of *B*
- $\,\circ\,\,$ If there are two reference frames with axes x,y and x',y'
 - The relative displacement of the two axes is $\mathbf{r_0}$
 - $\vec{r}=\vec{r}'+\vec{r_0}$
 - $ec{v}=ec{v}'+ec{v_0}$
 - $\vec{a} = \vec{a}'$

Forces

- Forces are the cause of acceleration, not movement
- Units of $kg \cdot \frac{m}{s^2}$ or N. Is a vector
- A force's agent is the object that applies the force
- Either contact or contact-free (long-range force or field force)
 - Contact
 - eg. Normal force, friction, air resistance, bouyancy
 - Non-contact
 - eg. Gravity, electromagnetic, weak (eg. radiation) & strong forces (eg. forces that hold atoms together)
- Newton's First Law
 - An isolated object, free form external force, will continue at constant velocity.
- Newton's Second Law

•
$$ec{F}_{net}=mec{a}$$

- $\vec{F}_{net} = F_{netx}\hat{i} + F_{nety}\hat{j} + F_{netz}\hat{z}$
- The magnitude of the gravitational force on YOU is weight. Units: newtons
 - Weight \propto mass
- $\circ~~F=Grac{Mm}{r^2}$
 - Force of gravity between masses
 - *r* is the distance between the masses
 - *M* and *m* are the masses of the two masses
- Newton's Third Law
 - For every force there is an equal but opposite force
 - The pair of forces **ALWAYS** act on different objects, or else the forces would cancel each other out.
- FBD
 - Pick one object (the 'body')
 - Identify all external forces that act DIRECTLY on the body

- Set a coordinate system
- Represent the object as a dot at the origin
- Draw arrows
- Draw components of each force
- Indicate direction of acceleration

• Forces:

- Weight, \vec{w}
- Spring force, \vec{F}_s
- Tension, \vec{T}
- Normal force, \vec{N}
- Friction
 - \vec{f}_s
 - \vec{f}_k
- Drag, \vec{D}
- Thrust, \vec{F}_{thrust}
- Electric & magnetic forces, \vec{F}_E, \vec{F}_M
- Friction
 - The force that resists sliding of surfaces against each other
 - Static friction \vec{F}_s resists movement while stationary
 - Kinetic friction \vec{F}_k resists movement while moving
 - f_s ≤ μ_sn, where μ_s is the friction coefficient and n is the magnitude of the normal force. μ_sn also can be called f_{s,max}
 - Usually, $\mu_k < \mu_s$
- Equilibrium
 - Special case where $\vec{a} = 0$
 - The vector sum of all forces acting on the object is 0
 - $F_{net_x}=0, F_{net_y}=0, F_{net_z}=0$
- How to do F = ma questions
 - Draw free body diagram CAREFULLY
 - Find direction of acceleration if necessary
- Circular motion
 - Motion follows a circular path, with constant speed. Velocity is not constant, and therefore acceleration is not constant
 - Velocity is always tangential to the circle and acceleration is always pointing to the center of the circle
 - Angular velocity, $\omega = v/r$

- Centripetal acceleration $a_c = v^2/r$
- Period, time to make one full revolution, $T = \frac{2\pi r}{v}$
- The force that causes uniform circular motion is always perpendicular to the path the object takes.
- If the magnitude of the velocity changes, tangential acceleration happens alongside the centripetal acceleration.
 - The centripetal and tangential components, when added, show the direction of \vec{a} .
 - ** ONLY HAPPENS WHEN SPEED IS CHANGING
- For vertical circles, resolve the gravity instead of the tension into x and y components
- Rigid Body Rotation about a Fixed Axis
 - Each particle in the rigid body travels in a circle.
 - Each particle might move at a different speed, but their period T is the same.
 - Angle ("theta"): $\theta(t)$ (rad)
 - $theta = \frac{s}{r}$
 - Radians are really just a ratio between two angles
 - angular velocity ("omega"): $w(t) = \frac{d}{dt}\theta(t)$ (rad/s)
 - angular acceleration ("alpha"): $a(t) = \frac{d}{dt}\omega(t)$ (rad/s^2)
 - s=r heta
 - $v_t = r \omega$
 - $a_t = r \alpha$
 - All kinematic equations for constant \vec{a} function the same for constant α
 - The angular velocity vector is parallel to the axis of rotation
 - Right hand rule, thumb represents angular velocity

Torque

- Torque is what causes rotations
- An unbalanced FORCE causes acceleration, but a net TORQUE causes rotation. Even with no net forces, objects can still rotate ($\vec{a} \neq 0$, object is not in equilibrium)
- $\circ~$ All forces produce a torque, $\tau~$
- $\circ ~~ au \propto F, au \propto d$
- $\circ \ \ \tau = F \times R$ (The force in question times length of the lever)
- A force directed towards the axis of rotation produces no torque.
 - Eg. pushing on a door perpendicular to the hinge
- Only the tangential component of a force produces a torque.

- As such, $\tau = rF_t = r(F \sin \phi)$, where r is distance to rotation axis and ϕ is angle between r and F
- Units are $N \cdot m$
- The shortest distance from the pivot to the force's line of action is the "effective lever arm".
- $\circ \ \ \tau = F \times$ effective lever arm
- Torque is a vector. It is the cross product of a vector and a scalar.

Cross Product

- $\circ \ \ |\vec{C}| = |\vec{A}| |\vec{B}| \sin \phi$
- $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$ (not commutative)
- Right hand rule: Position your fingers parallel to A, curl them to B, your thumb indicates the direction of C
- Vector product in cartesian components:

•
$$ec{i} imesec{i}=ec{j} imesec{j}=ec{k} imesec{k}=0$$

- $\vec{i} \times \vec{j} = \vec{k} = -(\vec{j} \times \vec{i})$
- Remember order ijk
 - i x j = k, j x k = i, k x i = j
- $\circ ~~ec{ au} = ec{ au} imes ec{ extsf{F}}$
- $\circ \ |ec{ au}| = rF\sin\phi$
- Adding torques
 - $au_{net} = t_{net,counterclockwise} au_{net,clockwise}$
 - $\tau_{net} = \text{sum of } \tau_i \text{ torques (counterclockwise)} \text{sum of } \tau_j \text{ torques (clockwise)}$

Rigid body equilibriums

- \circ Translational equilibrium: $ec{F}_{net}\Sigmaec{F}=0$
- Rotational equilibrium: $\vec{\tau}_{net}\Sigma\vec{\tau}=0$
- Therefore, a rigid body is in equilibrium (static equilibrium) if both:
 - $\vec{F}_{net} = 0$ and $\vec{\tau}_{net} = 0$
- $\circ \alpha$ is the same for all particles

Moment of inertia

- The angular acceleration of a particle is proportional to the net torque.
- $\circ~~I=(mr^2)$
- $\circ ~~ au = Ilpha$
- $\circ ~~ec{a} = R \cdot lpha$

 \circ I is the moment of inertia of a particle of mass m relative to the center of motion

Rotations

- $\circ ~~ au = (mr^2)lpha$
- Thus $t_{net} = \Sigma_i \vec{ au} = I$
- Parallel axis theorem
 - The moment of inertia of a body about an axis **parallel** and a distance d away from the center of mass is $I = I_{cm} + md^2$

Center of mass

- Plot all particles onto coordinate plane
- $\circ \;\; x_{CM} = {
 m sum \; of \;} m_i x_i \, / \, {
 m sum \; of \;} m_i$
- $\circ \;\; x_{CM} = {
 m sum \; of \;} m_i x_i \, / \, {
 m sum \; of \;} m_i$

The center of gravity is $_{CM}$. When considering rotational equilibium of a rigid body, treat the effect of F_g as a force applied at the center of mass.

- Special case: suspension
 - When something is suspended, its center of mass is vertically below the point of suspension
- Only three independent equations can be made from static equilibrium.
 - Two force equations, one torque equation
 - One force equation (components along an axis), two torque equations (torques about two different pivots)
 - Three torque equations (torques about three independent pivots)
 - 2 and 3 are not guaranteed to give independent equations.

Work

- $W_{net} =$ Change in displacement
- Dot product takes two vectors and results in one scalar result

• $\vec{a} \cdot \vec{b} = \Sigma a_i b_i$ where a_i, b_i

- $W = \vec{s} \cdot \vec{F}$ or W = component of F parallel to motion imes distance
- $W = F \cdot d \cdot cos(\theta)$, F and d are force and displacement, $cos(\theta)$ is angle between F and D
- When an acting force causes displacement, work has been done by the force onto the object.
- No displacement, no work. The force didn't cause it? No work.

Variable force work

- Sometimes, the force used to do work is variable. Eg. Squeezig a spring 10cm
- To solve, split displacement into short segments over which F is nearly constant
 - Thus, work is the area under a force vs. distance graph

•
$$W=\int_{x_1}^{x_f}F\,dx$$

Springs

- $\,\circ\,\,$ Hooke's Law: $\vec{F}_s \propto s$
- The force exerted by the string with stretched in one direction is opposite to the direction of the stretch.
- Work done by a spring:
- $\,\circ\,\,$ Work done by a spring = area under the $F_s \times x$ curve
 - Or $W_s = rac{1}{2}k(x_i^2 x_f^2)$ where k is the spring constant
 - Note that work external to the system W_{ex}

$$V_{ext}=rac{1}{2}k(x_f^2-x_i^2)$$

Energy

Kinetic Energy

$$\circ \quad \overline{K = \frac{1}{2}mv^2}$$
$$\circ \quad \overline{K - \frac{1}{2}Lv^2}$$

- $\begin{bmatrix} \mathbf{R} & \underline{2} & \mathbf{W} \\ & \underline{2} & \mathbf{W} \end{bmatrix}$ • As such, $\Delta K = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = W$
 - Kinetic energy is a scalar, measured in joules (J).
- Work-Kinetic Energy Theorem: The total work done by all external forces acting on a particle is equal to the increase in kinetic energy.
 - Or $W_{ext} = k_f k_i = \Delta k$
 - Remember that $W = F\Delta x$

Power

- Power is the rate at which work is done
- Average power = Work/time
- Measured in watts W
- \circ Instantaneous power: $P = ec{F} \cdot ec{v}$
- Rotational power: $P = \tau \cdot \omega$ and $W = \tau \theta$ for an angular displacement θ

• Remember that $\overline{\theta = \frac{x}{r}}$ for linear displacement x

Conservative forces are forces where the work done going from A to B is the same for all paths.

- $\circ F_g, F_s$ are usually conservative
- \circ F_f is generally not conservative
- F_t, F_n are uncertain.

Potential energy is energy related to the configuration of a system. It is internal to the system.

Work done by a conservative force is equal to the decrease in potential energy. Eg. A block is lifted. The work done against gravity is stored as gravitational potential energy (U_g)

$$W_{AB}=-\Delta U=U_A-U_B$$

 $U_g = mgy$. Units are joules, y is a scalar. Depends only on the vertical height of the object above a surface which you define.

 $U_s = rac{1}{2}kx^2$. The energy (joules) stored inside the compressed spring.

Mechanical Energy

- $\circ ~~ E = K + U_g + U_s + \dots$
- Or, $\Delta E_{mech} = \Delta KE + \Delta PE$ - Remember that $\Delta KE = W_c + W_{nc}$ and that $\Delta PE = -W_c$ (ONLY FOR CONSERVATIVE FORCES ONLY)

 \circ As long as all forces are conservative, E will be constant no matter what the time is

Momentum

Momentum

 \circ The linear momentum of a particle p is the mass times velocity.

• $\vec{P} = m\vec{v}$. Units are kg m/s

- Total momentum of a system is vector sum of all momenta in the individual particles
 - $\vec{P}_{total} = \vec{P}_1 + \vec{P}_2 + \dots$
 - Can be broken into x and y components

•
$$K = \frac{p^2}{2m}$$

- $\circ \ \ F_{ext} = {\rm Rate \ of \ change \ of } P$
 - True even when *m* is not constant!
- For a constant force:
 - $|\vec{I} = \Delta \vec{p} = \vec{F} \Delta t|$ (change in momentum = total impulse from external forces)
 - \vec{I} is the impulse.
 - Impulse is area under \vec{F} vs t graph, work is area under \vec{F} vs x graph
- Impulse-momentum theorem:

•
$$\Delta ec{p} = ec{I}$$

• $F_{avg} = rac{\Delta p}{\Delta t}$

• Conservation of momentum:

- When internal forces act, momentum is conserved. External forces transfer momentum in or out of the system
- For an isolated system, $\vec{P}_{f1} + \vec{P}_{f2} = \vec{P}_{i1} + \vec{P}_{i2}$
- $P_1 + P_2$ is a constant

Collisions

- Types can be elastic, completely inelastic, inelastic
- Completely elastic
 - No sticking at all, bounces away
 - Total kinetic energy is the same before and after
- Inelastic
 - Kinetic energy is converted to other forms
- Completely inelastic
 - Completely sticks together

Motion of a Center of Mass

- Total momentum of a collection of particles is equal to the total mass times the velocity of the center of mass
- $\circ ~ \Sigma_{external forces} = M_{total} ec{a}_{cm}$
- So $\mathbf{v}_{ ext{COM}} = rac{\sum m_i \mathbf{v}_i}{\sum m_i}$

General Motion of a Rigid Body

• Can be described via translation and rotation of the center of mass rather than from its axis of rotation

- $\circ~~\Sigmaec{F}=mec{a}_{CM}$
- $\circ \ \ \Sigma \vec{\tau_{CM}} = \vec{I}_{CM} \alpha$

• $K = K_{trans} + K_{rot} = \frac{1}{2}mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$, use if axis of rotation is not fixed

Rolling Motion

- In pure rolling motion, an object rolls without slipping
- **Combination motion** is when an object rotates about an axis moving on a straight line
- Velocity of any point is the velocity of the center plus tangential velocity of that point relative to center
 - Point on top moves at 2x speed
 - Point on bottom is stationary
- Dynamics:
 - Use $a_{CM} = R \alpha$
 - CM motion: $F = ma_{CM}$
 - Rotation about CM:

Angular Momentum

$$\circ \quad L = I\omega$$

- Units are kg m^2/s
- $L = r \times p$ for the momentum of a particle about an axis
- $\circ \tau_{ext} = I \alpha$ only for a rigid body since I is constant, as such, F = ma only applies when m is constant
- $\circ \ \ au = ext{rate of change of } L$
- Conservation of angular momentum:
 - When there are no external torques, total angular momentum stays constant.
 - One of the Big Three Conservation Laws, with Cons. of Energy and Cons. of Linear Momentum
- You can change linear -> angular by changing variables
 - m
 ightarrow I
 - $v
 ightarrow\omega$
 - etc.

Springs

Simple Harmonic Motion

- Displacement is a sinusoidal function of time
- $\circ ~~x(t) = A\cos{(\omega t + \phi)}$
- $\circ \ \omega t + \phi$ is called the phase, and measured in radians
- $\,\circ\,\,$ The cos function traces one complete cycle when the phase changes by 2π rad
- A is amplitude (maximum and minimum value of x)
- $\circ~\phi$ is phase constant (initial position at t=0)
- ω is related to period T and frequency $\frac{1}{T}$

•
$$\omega = \frac{2\pi}{T}$$
, angular frequency $a = -\omega^2 x$

• Energy is constant while oscillating

Mass and Springs

$$\circ \ a = -rac{k}{m}x$$

0